
Tombants subtidaux

Description de l'habitat sur la Côte Basque

Avec le soutien financier de

AVANT-PROPOS

Situé au fond du golfe de Gascogne, après quelques centaines de kilomètres de côte sableuse, le littoral basque se dresse sur des falaises rocheuses, entrecoupées de plages de sables et de graviers, de quelques champs de blocs également. Ce littoral classé au titre de la Directive Européenne 92/43/CEE relative à la conservation des habitats naturels ainsi que de la faune et de la flore pour des sites marins et littoraux est prolongé en mer par un site dont le classement repose notamment sur la présence de grottes et de tombants (site FR7200813 Côte basque et extension au large, habitat 8330 « grottes marines submergées ou semi-submergées »). Les fonds marins de cette partie du Golfe sont caractérisés par des remontés rocheuses (récifs) accessibles entre 15 et 50 m de fond, séparées par des étendues sableuses et/ou caillouteuses (CARTHAM, 2014).

Par ailleurs, cette zone est caractérisée par un contexte biogéographique méridional et un hydrodynamisme particulier, différents de ceux observés dans le reste du Golfe, comme le soulignent les travaux menés au sein du programme CARTHAM (Créocéan – IMA, 2012).

Afin de caractériser les habitats d'intérêt communautaire, diverses études ont été menées avec notamment les travaux réalisés en partenariat entre Créocéan et l'Institut des Milieux Aquatiques en 2004, puis au cours du programme CARTHAM au début des années 2010 (Créocéan et IMA, 2012) issu des travaux cartographiques du programme européen MeshAtlantic (Mata et al, 2013).

Le présent rapport porte sur les tombants sous-marins, ces murs dessinés à l'aide de lignes de niveau proches sur les cartes marines. L'objectif des travaux exposés était de vérifier la nature de ces tombants (leur relief), et au-delà des caractéristiques physiques, de déterminer quelles espèces sont présentes et si elles les caractérisent.

ZOWN	MAIRE	
Ava	nt-propos	3
I. C	Contexte	6
II. C	hoix des sites	7
III.	Méthodologie de terrain	8
1.	Sites	
2.	Investigations	
1	. Scaphandriers autonomes	9
2	Remotely Operated underwater Vehicle (ROV)	10
IV.	Types de données	11
1.	Données recueillies par les scaphandriers	11
1	Données physiques	11
2	. Données biologiques	13
2.	Données recueillies par le ROV	15
V. A	nalyse des données	16
1.	Description des sites au travers de leur biodiversité	17
2.	Analyse de similarité	18
3.	Analyse des corrélations	19
VI.	Conclusion	21
VII.	Bibliographie	24
Table	des figures et tableaux	
Figure	1 : Cartographie des périmètres Natura 2000 littoraux et en mer d'Hendaye à Biarritz	6
Figure	2 : Cartographie des sites Natura 2000 Baie d'Hendaye et Estuaire de la Bidassoa	6
Figure	3 : Carte prospective initiale	7
Figure	4 : Points à prospecter avec le ROV en seconde campagne	8
Figure	5 : Carte des point réalisés	8
Figure	6 : Olympus TG-6 et caisson	10
Figure	7 : Fifish V6	10
Figure	8 : Illustration de murs	11

Tombants subtidaux

Descriptions de l'habitat sur la côte basque

Figure 9 : Illustration de strates de divers pendages	11
Figure 10 : Estimation de la distance à la côte de chaque récif	13
Figure 11 : Nombre de taxons observés par embranchement	14
Figure 12 : Nombre moyen de taxons par récif	17
Figure 13 : Biodiversité observée sur chaque site plongé	17
Figure 14 : Représentation des taxons présents sur les différentes plongées	17
Figure 15 : Proportion des embranchements par plongée	18
Figure 16 : Similarité des sites	18
Figure 17 : Variables explicatives	20
Figure 18 : Similarité des sites	20
Figure 19 : Taxons avec statut, caractéristiques des différents groupes de tombants	21
Figure 20 : Modèle conceptuel de fonctionnement de l'écosystème coralligène	23
Tableau 1 : Type d'exploration	9
Tableau 2 : Description des sites de plongée	12
Tableau 3 : Synthèse des éléments physiques constitutifs de l'habitat	13
Tableau 4 : Liste des taxons rencontrés sur au moins 10 sites	15
Tableau 5 : Regroupement des embranchements par classification ascendante hiérarchique	19
Tableau 6 : Taxons avec statut particuliers observés lors de la moitié des plongées	21
Tableau 7 : Liste des poissons observés	22

. Contexte

Les sites *Natura 2000* littoraux et au large de la côte basque couvrent la quasi-totalité du domaine marin entre l'Adour et la Bidassoa (FR7200813 Côte Basque rocheuse et extension au large, FR7200775 Domaine d'Abbadia et corniche basque, FR7200776 Falaises de Saint-Jean de Luz à Biarritz, FR7212002 Rochers de Biarritz : le Bouccalot et la Roche ronde, FR7200774 Baie de Chingoudy).

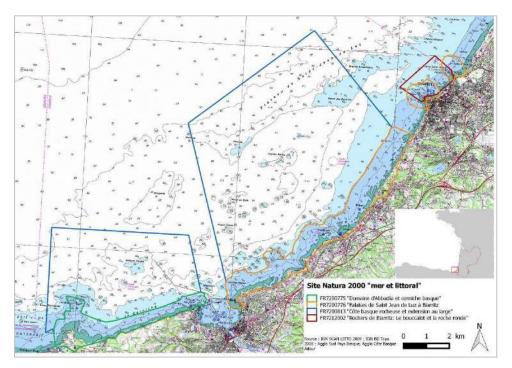


Figure 1: Cartographie des périmètres Natura 2000 littoraux et en mer d'Hendaye à Biarritz (Communauté d'Agglomérations Pays Basque)

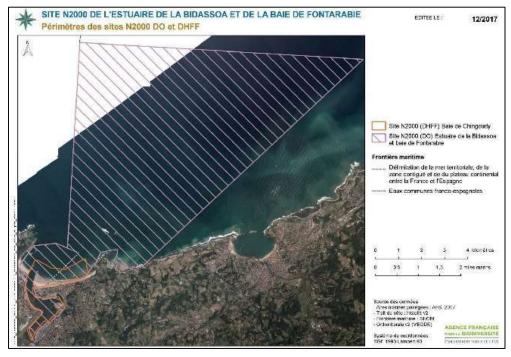
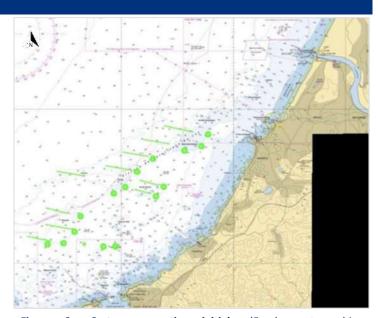


Figure 2: Cartographie des sites Natura 2000 Baie d'Hendaye et Estuaire de la Bidassoa (OFB, 2019)

La zone FR7200813 est classée au titre de divers habitats dont l'habitat 1170 – Récifs, qui comprend notamment les tombants (*Tombant de l'infralittoral* B1-7 selon le référentiel national actuel (La Rivière *et al.*, 2022)) : structures relativement verticales, situées en bout de plateau rocheux ou paroi d'un sec, et dessinant un décrochement de plus de 5 m. La notion de hauteur du tombant nous est propre, elle n'entre pas dans les définitions courantes telles que celle de Gruss (1952 *in* TOMBANT : Définition de TOMBANT (cnrtl.fr)).


Les tombants sont d'importants réservoirs de biodiversité, couverts d'une faune variée, colorée et riche (Fiche BioObs - annexe 1).

Ces habitats pourraient faire l'objet de mesures de gestion mais pour cela ils doivent préalablement être décrits et mis en perspectives par rapport aux activités qui se déroulent à leur proximité (croches d'engins de pêche, taxons arborescents sensibles aux coups de palmes, par exemple).

Le présent document s'attache donc à présenter l'approche utilisée pour décrire les tombants situés au large des côtes basques, à les décrire et à présenter leurs caractéristiques tant physiques qu'écologiques.

II. CHOIX DES SITES

En se basant sur les cartes marines du SHOM, nous avons déterminé les zones potentielles de tombants sur les bords des récifs du large (à l'est des récifs, marquées par les points verts). Nous alors espacé les points d'observation de manière à couvrir de façon régulière les profils tout en s'intéressant à des sites de profondeur, de dénivelé et d'orientation variés (Figure 3). Les lignes figurent les transects sur lesquels naviguer en vérifiant au sondeur le dénivelé car vers l'ouest (extérieur des récifs) les pentes sont plus douces selon les cartes.

Figure 3: Carte prospective initiale (Fonds cartographique data.shom.fr; système géodésique WGS84, échelle 1:108336)

Nous nous sommes également appuyés sur les connaissances de certains plongeurs locaux pour aller sur des spots connus, visités régulièrement ou non (Illarguita, Ficoa, Placeta).

Au fur et à mesure des explorations tant en scaphandre qu'avec le ROV¹, d'autres zones ont été choisies pour être inventoriées car il s'avère que parfois les informations délivrées par le fond de carte SHOM indiquent un décrochement mais le sondeur du bateau ne montre qu'une pente douce (observation faite sur les Esquilletac, par exemple).

¹ ROV : Remotely Operated underwater Vehicle

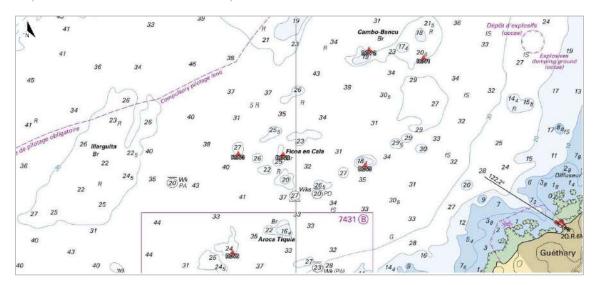


Figure 4 : Points à prospecter avec le ROV en seconde campagne (triangles rouges) (Fonds cartographique data.shom.fr ; système géodésique WGS84, échelle 1 :27084)

III. METHODOLOGIE DE TERRAIN

1. SITES

Sur la base de la carte prospective, nous avons exploré ou inventorié les sites suivants (Figure 5).

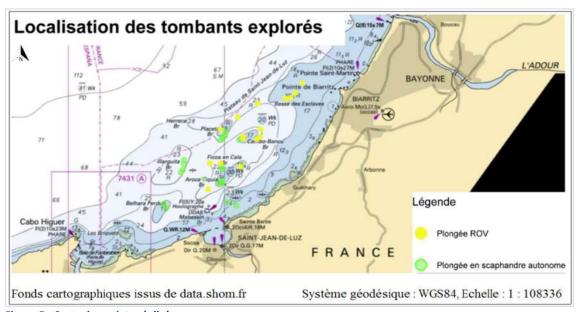


Figure 5 : Carte des points réalisés

Nous avons fait plonger un ROV (Remotely Operated underwater Vehicle) sur 16 points répartis sur 6 récifs et envoyé des plongeurs sur 20 points répartis sur 7 récifs (Figure 5 et Tableau 1). L'ensemble des plongées ont eu lieu de 2020 à 2024, du printemps à la fin de l'été, périodes où la biodiversité est importante, et plus particulièrement la diversité algale.

Tableau 1: Type d'exploration

Récif	Scaphandriers	ROV
Basse des Esclaves		Χ
Placeta	X	Χ
Cambo Banco	X	Χ
Illarguita	X	
Aroca Tiquia	X	Χ
Ficoa en Cala	X	Χ
Les Esquilletac	X	Χ
Belhara Perdun	X	

2. INVESTIGATIONS

La bibliographie ne fournit pas de méthode de description ni d'évaluation de cet habitat. Nous avons donc fait appel aux spécialistes nationaux du milieu rocheux afin d'échanger sur la méthode la mieux indiquée pour commencer nos travaux (S. Derrien-Courtel et J. Grall). Nous nous sommes accordés sur une approche relativement exhaustive des taxons présents, un peu comme ce qui avait été fait pour la mise au point de la méthode de suivi du REBENT. Cependant, nous avons privilégié une approche non destructrice, en restant sur des taxons bien visibles et identifiables à l'œil nu, car notre objectif est de caractériser cet habitat de manière simple et aisément reproductible.

Ainsi, nous avons mis en place 2 approches nous permettant de quadriller largement cet habitat et de fournir des listes de taxons relativement fournies :

- Des missions menées in situ par un binôme de plongeurs : biologiste et photographe
- Des films réalisés par un ROV

1. Scaphandriers autonomes

a. Mise en place des travaux

L'utilisation de la carte SHOM disponible en ligne (<u>Créer vos cartes en ligne (outil Dessin)</u> (shom.fr)), permet grâce aux courbes de profondeurs de pointer les sites récifaux où des tombants peuvent se trouver. Nous couplons le sondeur du bateau qui nous renvoie une image des reliefs passant en dessous, à ces coordonnées entrées dans le GPS. Lorsqu'un décrochement apparaît aux abords du point, nous notons les coordonnées et repassons aux environs afin de prendre également des amers, et de vérifier s'il s'agit d'un piton ou d'un mur courant sur plusieurs mètres de part et d'autre du point. Il nous faut également noter quel cap prendre pour le suivre. Si nous sommes au-dessus d'un piton, nous vérifions aux alentours si d'autres structures semblables sont présentes et accessibles (pas trop éloignées pour être atteintes à la palme).

Le point de mise à l'eau est alors matérialisé par un corps mort amovible placé sur le platier, à proximité du tombant. Ce sont ces points de mise à l'eau qui sont reportés sur les cartes.

Une fois au fond, les plongeurs partent à main droite ou à main gauche en suivant la paroi, photographient le paysage, des espèces et des morceaux du mur, inventorient les espèces en présence et notent diverses informations (orientation du tombant, aspect, profondeur du platier et du fond, température et thermocline).

b. Matériel photographique

Du matériel photographique a été acquis pour les travaux en plongée, afin de compléter et de préciser les relevés réalisés par le plongeur biologiste : appareil photo numérique Olympus TG-6 avec caisson étanche, lampes et phare.

Figure 6: Olympus TG-6 et caisson

2. Remotely Operated underwater Vehicle (ROV)

a. Mise en place du ROV

Nous nous rendons en bateau sur un point repéré par l'observation des courbes de profondeur et les coordonnées pointées sur la carte SHOM, comme pour une plongée en scaphandre autonome. Avec le sondeur, nous vérifions qu'il y a bien un décrochement aux alentours du point rallié et actionnons l'ancre virtuelle qui permet au navire de rester sur son point sans avoir à mettre de matériel au fond.

Une fois le bord du tombant trouvé, l'opérateur fait plonger le ROV afin de filmer la paroi. Des prises de vue sont faites selon la visibilité sur un plan large pour capturer l'aspect général du tombant, puis il est filmé au plus près afin d'obtenir des détails sur les espèces présentes. Le ROV fait alors des descentes et remontées en se déplaçant latéralement entre 2 verticales. Son temps d'immersion est d'environ 40 mn/plongée (durée d'une batterie, variable s'il y a du courant par exemple).

Les conditions de mer pour les sorties ROV sont importantes pour de bonnes conditions de travail et pour ramener des images exploitables : une faible houle, ample, une quasi-absence de vent et un ciel le plus dégagé possible pour la clarté des images. Bien qu'équipé de lampes puissantes, le ROV a besoin d'une bonne luminosité environnante pour la qualité des images ramenées.

b. Matériel vidéo

Le ROV utilisé est un Fifish V6 de la marque Qysea, maniable car muni de 6 hélices, avec des phares puissants et une excellente qualité d'image (4K) rendant leur vraie couleur aux organismes. Il peut plonger à 100 m. Il est filaire (relié au bateau par un câble).

Figure 7 : Fifish V6

IV. Types de données

1. Donnees recueillies par les scaphandriers

Les observations collectées par les plongeurs permettent de ramener des listes d'espèces et des données semi-quantitatives qu'il est possible de tester statistiquement.

1. Données physiques

Les données physiques relatives aux tombants sont les suivantes, elles sont détaillées en annexe 2 :

- Le type de profil (mur ou strates) (Figure 8 et Figure 9)
- La profondeur du platier et celle du fond, et donc par soustraction le dénivelé de la structure
- L'orientation du tombant
- La durée d'observation liée à la profondeur de travail des plongeurs et donc au respect des règles de sécurité

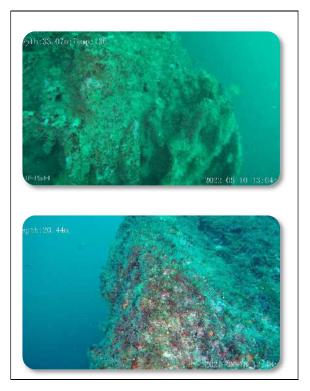


Figure 8 : Illustration de murs

Figure 9 : Illustration de strates de divers pendages

Les plongeurs ont réalisé 20 plongées à partir de points de surface différents et quelques fois identiques mais dans ce cas en prenant des directions opposées le long du tombant, c'est le cas pour Cambo Banco par exemple. Les données de profondeur (Tableau 2) sont relevées par les profondimètres des plongeurs au moment de la plongée, pour le traitement des données celles-ci ont été ramenées au zéro des cartes (profondeur CM = Côtes marines)

Tableau 2 : Description des sites de plongée

Site	Code Site	Heure ob	servation H_Fin	Coordonnées de mise à l'eau	Orientation tombant	Profo Platier	ndeur Fond	Aspect, Direction, Diverses informations
Cambo Banco	Cb_1	15h10	15h55	43°27,209' N 1°39,226' O	Nord-ouest / Sud-est	24	30	Pente "douce", quelques failles et petits surplombs. Fond d'éboulis.
Cambo Banco	Cb_2	10h	10h35	43°27,209' N 1°39,226' O	Est / Ouest	19	40	Mise à l'eau direction Sud, cheminement vers l'Est. Thermocline à 31m. Platier, tombant assez abrupt, quelques failles où sont présentes des ophiures et des galathées.
Ficoa	Fi_1	10h10	11h	43°26,098' N 1°40,112' O		22	32	Pitons reliés par des arches, faille orientée Est / Ouest. Blocs d'effondrement au fond, anfractuosités et cavités.
Ficoa	Fi_2	10h40	11h25	43°26'10,54" N 1°40'07,92" O	Nord-ouest / Sud-est	24	35	Strate découpée, avec des cavités, relevée au sud (70 à 80 °). Nombreuses arches. Mise à l'eau au Nord-ouest de la cathédrale et cheminement vers le Sudest, retour par la cathédrale.
Ficoa	Fi_3	10h40	11h05	43°26,216' N 1°39,127' O		20	32	Petit sec remontant à 20 m. Grand plateau à 27 m, avec quelques blocs et fissures. Puis tombant vertical jusqu'à 32m fond couvert de blocs de 50 à 60 cm de diamètre.
Aroca	Ar_1	14h25	15h20	43°25,591' N 1°40,262' O	Est / Ouest	23	38	Mise à l'eau, direction Sud. Ensemble de failles, présence d'une arche et d'une grotte. Fond de blocs et sédiments. Nombreuses cavités plus ou moins grandes.
Aroca	Ar_2	15h50	16h35	43°25'34,86" N 1°40'07,00" O	Nord-ouest / Sud-est	22	32	Failles avec quelques blocs au fond. Grands blocs isolés et quelques cavités creusées sous certains blocs. Failles formées par des strates assez verticales. Perte de biodiversité vers 26 m.
Aroca	Ar_3	10h10	11h00	43°25'39,38" N 1°40'05,68"O	Ouest / Est	20	32	Plateau à 20 m puis pente environ 70°, creusée de cavités et failles. Retour par la grande grotte et l'arche.
Esquilletac	Es_1	14h40	15h35	43°24,847' N 1°39,786' O 43°24'44,99" N		20	28	Carte avec courbes de niveau de 14 à 31 m, réalité 20-28 m. Strates successives relevées au Sud, inclinaison 60-70°. Strates hautes seulement de 3 à 4 m. Cheminement vers le Nord. Grand blocs et fond de sédiments. Au bout de 15mn, la pente s'est adoucie. Strates d'orientation est-ouest, relevées
Esquilletac	Es_2	14h40	15h30	1°39'25,22" O	Ouest / Est	13	18	au Sud/Sud-ouest. Strates parallèles, nombreuses cavités.
Illarguita	II_1	15h15	15h50	43°26,428' N 1°42,071 O	Est / Ouest	28	36	Fond constitué de grands blocs et éboulis. Mise à l'eau direction cap nord-est.
Illarguita	II_2	14h40	15h15	43°26,289' N 1°42,056' O		27	35	Tombant en strates, fond de grands blocs et éboulis.
Illarguita	IL3	15h20	16h	43°26,071' N 1°42,135' O	Sud-ouest / Nord-est	26	34	Direction Sud-est pour trouver le tombant. Thermocline à 20m (13 °C). Strates montant vers le Nord. Fond de blocs, nombreux surplombs, arche.
Illarguita	II_4	10h30	11h10	43°26,011' N 1°42,2474 O		26	36	Direction sud, assez longue distance pour trouver le tombant Strates relevées vers le Nord. Fond constitué de roche et de sédiments.
Placeta	Pl_1	9h45	10h25	43°27,316' N 1°40,080' O	Est / Ouest	25	40	Strates tournées à l'Est, légèrement remontante, bien espacées. Fond constitué de grands blocs enchevêtrés. Thermocline importantes à 30m.
Placeta	Pl_2	10h	10h40	43°27,316' N 1°40,080' O	Est / Ouest	25	40	Cap Sud / Sud-est pour trouver le tombant, puis Est. Strates.
Placeta	Pl_3	10h30	11h10	43°27,487' N 1°39,959' O		24	31	Strates avec de beaux surplombs. Mais pente moins prononcée que l'image sondeur.
Placeta	Pl_4	15h10	15h45	43°27,324' N 1°40,119' O	Est / Ouest	20	40	Direction Sud-est pour trouver le tombant. Strates empilées sur blocs d'effondrement, orientées Sud-est.
Belharra	Be_1	9h	9h45	43°24,657' N 1°43,049 O	Sud-ouest / Nord-est	17	23	Mise à l'eau direction Sud-Sud-est. Grande strate verticale, après la sortie de la grotte. Fond constitué d'éboulis et grands blocs.
Belharra	Be_2	14h25	15h05	43°24,806′ N 1°43,066 O	Nord / Nord- Est	20	27	Laisser la bouée à 7h. Mur avec des failles, fond d'éboulis et blocs.

Les 20 sites répartis sur 7 récifs et remontées rocheuses présentent 2 profils différents : murs ou strates (Figure 8 et Figure 9). Pour les parties investiguées, la majorité des récifs est composée de strates, ce sont principalement les récifs du large (Placeta, Illarguita) et le récif proche de la côte (Les Esquilletac). Les points observés à Cambo Banco, Aroca et Ficoa sont des murs. Les observations faites à Belhara présentent les 2 profils. Ce site à la morphologie très variée et découpée présente de nombreux profils en lien avec son passé géologique de grand lit fluvial : marmites et canyons sont les preuves de l'érosion due au cours d'eau.

Tableau 3 : Synthèse des éléments physiques constitutifs de l'habitat

	Т	Р	D	Pр	Pf	Do	0
Cambo Banco_1	34						
Cambo Banco_2	55						
Belhara_1	62						
Belhara_2	65						
Aroca_1	44						
Aroca_2	53						
Aroca_3	56						
Esquilletac_1	33						
Esquilletac_2	45						
Illarguita_1	46						
Illarguita_2	53						
Illarguita_3	42						
Illarguita_4	30						
Placeta_1	59						
Placeta_2	51						
Placeta_3	45						
Placeta_4	41						
Ficoa_1	48						
Ficoa_2	55						
Ficoa_3	48						

<36	36-45	46-55	>55	Taxons
mur	strates			Profil
≤10m	11-20m	≥20m		Dénivelé
<20m	20-24m	25-30m		Profondeur du platier
<25m	25-29m	30-34m	≥35m	Profondeur du fond
≤35mn	36-40mn	>40mn		Durée d'observation
<90°	90-179°	180-269°	270-360°	Orientation

La majorité des relevés ont été faits sur des tombants orientés est-ouest. Les récifs du large ont un platier à une profondeur comprise entre 20 et 25 m et plongent jusqu'à 40 m.

A l'aide du site du SHOM, il a été possible d'estimer la distance à la côte de chaque récif (Figure 10).

Figure 10 : Estimation de la distance à la côte de chaque récif

2. Données biologiques

Les observations directes et l'analyse des photographies ont permis de recenser 174 taxons, identifiés au genre ou à l'espèce (Worms, 2025), certes loin des 562 taxons trouvés au cours du programme Circareef (de Casamajor *et al.*, 2022), mais déjà intéressant pour l'approche que nous recherchons. Les embranchements les plus représentés sont les Cnidaires (*Corynactis viridis*, *Aglaophenia spp.*,

Gymnangium montagui), les Spongiaires (*Pachymatisma johnstonia, Clathrina sp., Cliona sp., Aplysina sp., Axinella spp.*) et les Algues (*Phymatolithon lenormandii, Peyssonnelia spp., Dictyopteris polypodioides*) qui restent encore très présentes bien qu'éparses.

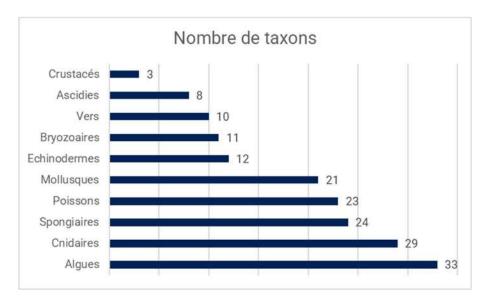


Figure 11 : Nombre de taxons observés par embranchement

Dictyopteris polypodioides © J. Popovský - CAPENA

Près d'une quarantaine de taxons ont été rencontrés sur au moins la moitié des plongées et seulement l'algue encroûtante *Phymatolithon lenormandii* sur tous les sites.

Tableau 4 : Liste des taxons rencontrés sur au moins 10 sites

Embranchement	Taxon
	Phymatolithon lenormandii
	Peyssonnelia spp.
Algues	Dictyopteris polypodioides
	Chrysymenia ventricosa
	Drachiella spectabilis
Bryozoaires	Pentapora facialis
	Reteporella grimaldii
	Corynactis viridis
	Aglaophenia spp.
	Gymnangium montagui
	Obelia sp.
Cnidaires	Sertularella sp.
Offidalies	Caryophyllia smithii
	Eunicella verrucosa
	Parazoanthus axinellae
	Leptogorgia sarmentosa
	Leptopsammia pruvoti

Embranchement	Taxon
	Holothuria spp.
	Echinaster sepositus
Echinodermes	Sphaerechinus granularis
	Ophioderma longicaudum
	Echinus esculentus
Mollusques	Felimare tricolor
Moliusques	Felimare cantabrica
	Pachymatisma johnstonia
	Clathrina sp.
	Cliona sp.
Spongiaires	Myxilla sp.
Sportgialles	Aplysina sp.
	Axinella spp.
	Thymosia guernei
	Ircinia sp.
	Protula spp.
Vers	Filograna spp.
	Salmacina sp.

Tous les sites Plus des 3/4 des sites La moitié ou plus des sites

2. Données recueillies par le ROV

Les campagnes de ROV ont eu lieu de septembre 2018 à septembre 2024. Le ROV a été utilisé sur 16 points répartis sur 6 récifs. Une plongée a été faite sur le versant extérieur de la Basse des Esclaves : celle-ci a permis de confirmer que la pente externe des récifs est en pente douce, tel que le laissait supposer la carte marine et le sondeur du bateau.

Les images du ROV permettent de ramener des données sur les profils des sites (Figure 8 et Figure 9) et sur les grands groupes recouvrant le substrat.

Deprote 20, 250.
2021-08-1.c. 12 -19: 20

Strates peu profondes et presque horizontales

Strates à fort pendage

L'utilisation du ROV permet de couvrir d'importantes surfaces. Cependant, les conditions de mer semblent plus contraignantes que pour les plongées en scaphandre : houle et vent doivent être réduits au maximum (houle < 1 m), et la couverture nuageuse doit être faible. Cette technique coûte aux pilotes qui, malgré leur habitude de travailler en mer, souffrent régulièrement de naupathie et se fatiguent relativement vite.

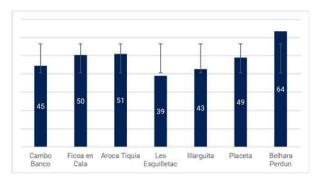
Les films permettent de visualiser le paysage, la forme des tombants, la nature du fond (blocs, galets, etc.), la profondeur, l'étagement des communautés. Il est également possible de distinguer les déchets comme des restes d'engins de pêche, de savoir si le fond est envasé ou ensablé.

Mais au niveau des espèces, les déterminations sont difficiles. Il est possible de reconnaître des espèces mobiles, quelques grands ou volumineux individus d'espèces benthiques fixées (*Pachymatisma johnstonia, Pentapora spp.*). Au-delà de l'impossibilité de déterminer précisément les espèces, il est quasiment impossible de voir et donc de savoir si certains taxons normalement répandus, sont présents (*Obelia spp.*, *Sertularella spp.*).

Langouste

Flore et faune benthiques

V. ANALYSE DES DONNEES


Les données d'espèces observées sur l'ensemble des sites ont été soumises à divers tests, de l'analyse descriptive simple permettant de présenter des informations par site et par embranchement, aux analyses plus complexes sur la biodiversité et les paramètres du biotope.

Dans la suite de cette partie, le terme « plongée » est synonyme de tombant exploré, qui est en réalité la partie du tombant de tel ou tel récif exploré en une plongée.

L'indice de Shannon appliqué à l'ensemble des données avec une valeur de 4,78 indique un niveau de diversité important qu'il convient de présenter.

1. Description des sites au travers de leur biodiversite

De 30 à 65 taxons ont été observés lors des différentes plongées (Tableau 3 et Figure 13). La présentation de ces observations par récif montre une biodiversité moyenne variable (Figure 12), avec des disparités plus prononcées selon les plongées (Figure 13).

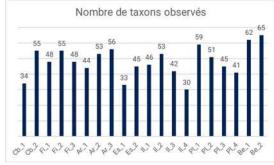


Figure 12 : Nombre moyen de taxons par récif

Figure 13 : Biodiversité observée sur chaque site plongé

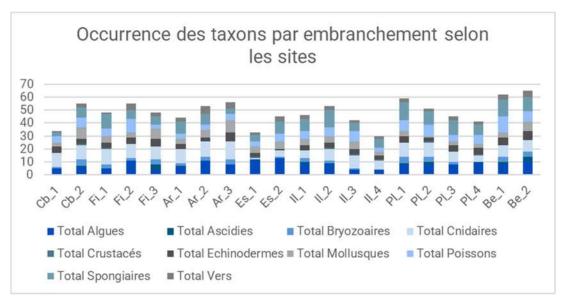


Figure 14 : Représentation des taxons présents sur les différentes plongées

Spongiaires, algues, cnidaires et poissons sont les embranchements les plus diversifiés sur l'ensemble des sites.

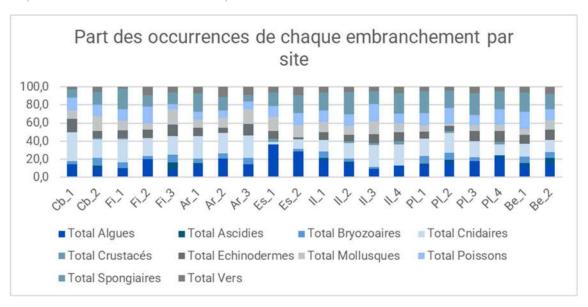


Figure 15: Proportion des embranchements par plongée

2. ANALYSE DE SIMILARITE

Cette analyse a pour objectif de déterminer quels embranchements caractérisent quels sites, quelles espèces expliquent les différences.

L'analyse factorielle des correspondances, réalisée sur l'ensemble des embranchements par site, indique qu'il n'est pas possible de rejeter l'hypothèse « qu'il y a indépendance des uns par rapport aux autres ». Ce qui signifie que les sites ne peuvent pas être distingués les uns des autres par la liste des embranchements présents sur chacun.

Bien que les populations présentes sur les différents récifs soient semblables, le récif des Esquilletac se distingue par sa proximité à la côte et une faible profondeur (Figure 16).

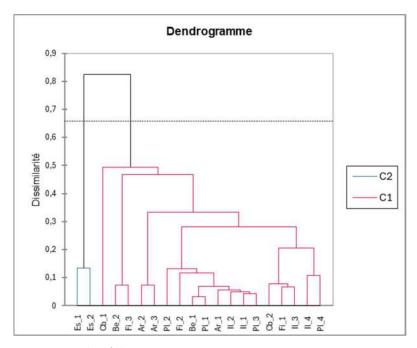


Figure 16 : Similarité des sites

Au niveau des embranchements, peu de crustacés et d'ascidies ont été observés certainement du fait de la méthode d'investigation (visuelle, plutôt opportuniste bien que la plus exhaustive possible mais peu adaptée à ces embranchements furtifs, réfugiés sous des surplombs ou dans des anfractuosités) (Tableau 5). Pour de tels taxons, il faudrait pouvoir s'attarder davantage et déployer plus de plongeurs auxquels des embranchements particuliers à observer seraient attribués.

Tableau 5 : Regroupement des embranchements par classification ascendante hiérarchique

Classe	1	2	3
Nombre d'objets par classe	8	1	1
Somme des poids	8	1	1
Variance intra-classe	0,153	0,000	0,000
Distance minimale au barycentre	0,303	0,000	0,000
Distance moyenne au barycentre	0,361	0,000	0,000
Distance maximale au barycentre	0,481	0,000	0,000
	Algues	Ascidies	Crustacés
	Bryozoaires		
	Cnidaires		
	Echinodermes		
	Mollusques		
	Poissons		
	Spongiaires		
	Vers		

La classe 1 regroupe les embranchements présents plus ou moins abondamment sur une large majorité des sites voire présents partout (algues, poissons et spongiaires). Echinodermes, mollusques et vers sont présents partout mais représentés par peu de taxons. Enfin, les bryozoaires n'ont pas été observés sur tous les sites, mais ces taxons en plus d'être difficiles à identifier sont parfois simplement difficiles à observer.

3. Analyse des correlations

L'analyse des corrélations entre les sites et leurs descripteurs physiques (profil, dénivelé, profondeurs, orientation, distance à la côte et durée d'observation) montrent que :

- La distance à la côte influe beaucoup sur les résultats : ce paramètre peut expliquer jusqu'à près de 28 % la répartition, ce qui uniformise le dendrogramme en regroupant les sites par récifs, ce qui est logique et n'apporte pas d'information supplémentaire pour l'analyse.
- Dénivelé, profondeur du fond et orientation expliquent la répartition des taxons (Figure 17).

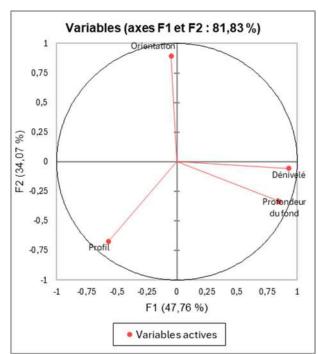


Figure 17: Variables explicatives

Trois groupes de sites se détachent (Figure 18) :

- C1: Ces sites ont en commun leur orientation, nord-ouest / sud-est, et une durée d'observation de plus de 40 mn;
- C2: Ces sites se ressemblent par la profondeur au pied du tombant, supérieure à 35 m, et leur orientation, nord-est / sud-ouest;
- C3: Ce groupe présente un dénivelé inférieur à 10 m et une orientation nord-est / sud-ouest.

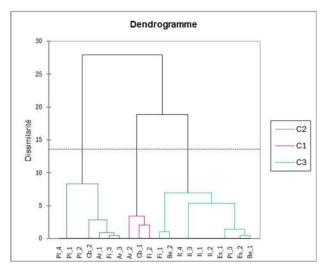


Figure 18 : Similarité des sites

Lorsqu'on regarde parmi les espèces d'algues caractéristiques des récifs rocheux de la côte basque et parmi les espèces de la liste ZNIEFF Nouvelle-Aquitaine, on voit que 26 taxons sont présents sur tous les récifs et 18 ont été observés lors de la moitié des plongées (Tableau 6). En annexe 3, l'ensemble des algues caractéristiques et opportunistes ainsi que la faune de statut ZNIEFF sont listées.

Tableau 6: Taxons avec statut particuliers observés lors de la moitié des plongées (illustrations en annexe 3)

Taxon	Statut	Nombre de
ΙάλΟΠ	Statut	plongées
Serranus cabrilla	ZNIEFF	18
Pachymatisma johnstonia	ZNIEFF	17
Peyssonnelia spp.	Caractéristique	16
Caryophyllia smithii	ZNIEFF	15
Obelia sp.	ZNIEFF	15
Sertularella sp.	ZNIEFF	15
Aglaophenia spp.	ZNIEFF	14
Felimare tricolor	ZNIEFF	14
Sphaerechinus granularis	ZNIEFF	14
Dictyopteris polypodioides	Caractéristique	14
Aplysina sp.	ZNIEFF	13
Axinella spp.	ZNIEFF	12
Eunicella verrucosa	ZNIEFF	12
Pentapora facialis	ZNIEFF	11
Drachiella spectabilis	Caractéristique	11
Echinus esculentus	ZNIEFF	10
Ircinia sp.	ZNIEFF	10
Leptopsammia pruvoti	ZNIEFF	10

En croisant les résultats de la Figure 18 à la liste par plongée des espèces d'intérêt, il ressort que les 3 groupes de sites sont caractérisés par les taxons suivants (Figure 19) :

Groupe C1	Groupe C2	Groupe C3
Caryophyllia smithii	Peyssonnelia spp.	Pachymatisma johnstonia
Sertularella sp.	Obelia sp.	Peyssonnelia spp.
Aglaophenia spp.	Sphaerechinus granularis	Felimare tricolor
Eunicella verrucosa	Leptopsammia pruvoti	Dictyopteris polypodioides
Pentapora facialis	Dictyopteris polypodioides	Aplysina sp.
	Aplysina sp.	

Figure 19 : Taxons avec statut, caractéristiques des différents groupes de tombants (illustrations en annexe 3)

VI. CONCLUSION

Les travaux exploratoires présentés dans ce rapport montrent que les tombants de la côte basque sont le support de nombreuses espèces marines. La base végétale est représentée par des algues calcaires encroûtantes et des algues volumineuses du genre *Peyssonnelia*. Les embranchements caractéristiques sont représentés par des organismes constructeurs (Bryozoaires, Cnidaires et Spongiaires). Cependant ces derniers embranchements sont difficiles à identifier et même à observer en raison de leur taille, du manque de systématiciens et du coût de l'identification de taxons délicats.

Ces 2 éléments nous amènent à penser qu'une approche écosystémique basée sur les modèles appliqués au coralligène pourraient être adaptées puis utilisées en développant un indice utilisable par les gestionnaires d'aires marines protégées tels que :

- l'EBQl², qui permet d'évaluer un état de conservation (Ruitton et al., 2017),
- l'ESCA³, qui permet de traduire les effets d'activités anthropiques (Piazzi et al., 2021),
- le CAI⁴, qui est utilisé pour apprécier les mesures de gestion (Deter *et al.*, 2012).

La liste des espèces rencontrées couramment au cours de ces campagnes d'investigation (Tableau 4) et celle des espèces sous statut (Tableau 6 et Tableau 7) ont été traitées du point de vue de l'approche EBQI (annexe 4) : nous avons vérifié si tous les compartiments décrivant l'écosystème « tombant » sont présents, facilement observables, quantifiables et identifiables pour compléter un schéma de type « modèle conceptuel de l'écosystème coralligène » (Figure 20). La liste sera également à compléter avec celle établie par l'équipe de De Casamajor en 2022 (De Casamajor et al., 2022) qui a procédé à des relevés et des prélèvements en cours d'identification. Par ailleurs, la sensibilité des espèces sélectionnées pour ces suivis devra être renseignée et prise en compte. Certains compartiments devront être évalués de manière quantitative ce qui n'a pas été le cas lors de ces travaux préliminaires. Dénombrement ou recouvrement des divers compartiments mesurés à l'aide de quadrats souples, le long de transects sur des lignes de profondeur constante, doublés de quadrats-photo, apporteraient des données qualitatives (identification) et quantitatives permettant de comparer les tombants entre eux.

Tableau 7 : Liste des poissons observés

Nom scientifique	Nom commun
Boops boops	Bogue
Coris julis	Girelle
Ctenolabrus rupestris	Cténolabre
Dasyatis pastinaca	Pastenague
Diplodus cervinus	Sar tambour
Diplodus vulgaris	Sar à tête noire
Gobius xanthocephalus	Gobie à tête jaune
Labrus bergylta	Grande vieille
Labrus mixtus	Coquette
Muraena helena	Murène
Oblada melanura	Oblade
Parablennius gattorugine	Blennie gattorugine

Nom scientifique	Nom commun
Parablennius pilicornis	Blennie pilicorne
Parablennius rouxi	Blennie de Roux
Parablennius ruber	Blennie rouge
Scorpaena notata	Rascasse
Serranus cabrilla	Serran chevrette
Spondyliosoma cantharus	Dorade grise
Symphodus melops	Crénilabre
Thorogobius macrolepis	Gobie à grandes écailles
Trachurus mediterraneus	Chinchard
Tripterygion delaisi	Triptérygion jaune
Trisopterus luscus	Tacaud

Espèces de la liste ZNIEFF de Nouvelle-Aquitaine

² EBQI : Ecosystem based quality index

³ ESCA: Ecological Status of Coralligenous Assemblages

⁴ CAI : Coralligenous AssemblageIndex

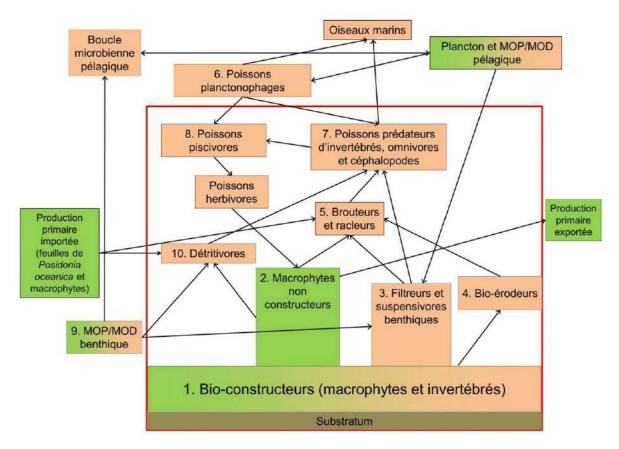


Figure 20: Modèle conceptuel de fonctionnement de l'écosystème coralligène (Ruitton et al., 2017). MOP: matière organique particulaire, MOD: matière organique dissoute. En vert: la production primaire, en marron: la production secondaire. Les compartiments numérotés de 1 à 10 sont ceux qui ont été sélectionnés pour faire l'objet d'une évaluation pour le calcul de l'EBQI. Le cadre rouge délimite l'écosystème.

En croisant les divers tableaux et figures présentés dans ce rapport, on voit qu'il est possible d'attribuer au moins un taxon à chaque compartiment de ce schéma conceptuel.

Pour utiliser les autres index, il faut tenir compte d'indicateurs de pression pour l'ESCA comme la présence d'espèces invasives, la sédimentation et l'enrichissement en nutriments que nous n'avons pas récupérés au cours de nos travaux. Pour le CAI, une attention est portée sur les espèces sensibles aux pressions anthropiques dans les assemblages coralligènes et sur l'identification des pressions (artificialisation du littoral, aquaculture, pêche, agriculture, industrie, etc.). Des données environnementales, des observations relevées ou suivies par ailleurs (dont la disponibilité sera à vérifier) et des données de sensibilité des espèces seraient utiles pour compléter ces travaux et proposer aux gestionnaires des sites Natura 2000 de la côte basque un protocole de suivi en fonction des activités.

Au niveau des aménagements et contraintes, l'étagement des communautés sera à étudier pour adapter les relevés de données en fonction des espèces caractéristiques. On peut proposer un travail par bande de 5 m de hauteur par exemple, à adapter éventuellement après analyse des données.

Au niveau technique, les méthodes subaquatiques sont limitées pour les scaphandriers par la durée d'immersion pour rester dans les courbes de sécurité, et pour les ROV par la durée de la batterie et l'état de la mer.

En tenant compte de ces éléments, nous remarquons qu'il faudra tenir compte et analyser les données de pression qui s'exercent sur le milieu au travers de l'observation, par exemple, des nécroses de gorgones ou des roses de mer abîmées. Afin de finaliser un protocole répondant aux attentes des gestionnaires, il faudra également déterminer leurs attentes (connaissance et suivi de l'habitat du point de vue de son état de conservation ou aborder plus précisément l'impact des activités comme la présence de filets fantômes) et les moyens techniques et financiers disponibles pour leur mise en œuvre. Un groupe de travail réunissant scientifiques et gestionnaires sera à réunir pour aborder l'ensemble des questions : du choix des espèces aux détails du protocole pour répondre à la bonne question.

VII. BIBLIOGRAPHIE

Casamajor (de) MN., Sartoretto S., Gouillieux B., Saint Germain A., Lissardy M., Ravel C., Bujan S., Devaux L., 2022. Circareef/Circatax Récifs circalittoraux: de la Méditerranée au sud du golfe de Gascogne. Rapport, ODE/LITTORAL/LERAR/22.023, 91 p.

Créocéan – IMA, 2012. Natura 2000 en mer – Lot 4 Aquitaine Côte Basque : cartographie et évaluation des habitats marins – Phase 2. 130 p.

Deter J., Descamp P., Ballesta L., Boissery P., Holon F., 2012. A preliminary study toward an index based on coralligenous assemblages for the ecological status assessment of Mediterranean French coastal waters. *In* Ecological Indicators 20(2012) pp 345-352.

Gruss, 1952 in TOMBANT: Définition de TOMBANT

La Rivière M., Delavenne J., Janson A.-L., Andres S., de Bettignies T., Blanchet H., Decaris F.-X., Derrien R., Derrien-Courtel S., Grall J., Houbin C., Latry L., Le Gal A., Lutrand A., Menot L., Percevault L., Tauran A., Thiébaut E., 2022. Fiches descriptives des habitats marins benthiques de la Manche, de la Mer du Nord et de l'Atlantique. PatriNat (OFB-CNRS-MNHN), Paris :578 pp.

Mata D., Sanz J.L., Agudi L.M., Tello O. and MeshAtlantic Team, 2013. MESHATLANTIC PROJECT Compilation and harmonization bathymetric data in the atlantic area. GEBCO Bathymetric Science Day, Venice.

Piazzi L., Gennaro P, Cecchi E., Bianchi C.N., Cinti M.F., Gatti G., Guala I., Morri C., Sartoretto F., Serena F., Montefalcone M., 2021. Ecological status of coralligenous assemblages: Ten years of application of the ESCA index from local to wide scale validation, Ecological Indicators, Volume 121, 107077.

Ruitton S., Boudouresque C.F., Thibaut T., Rastorgeff P.A., Personnic S., Boissery P., Daniel B., 2017. Guide méthodologique pour l'évaluation écosystémique des habitats marins. MOI publ., 161 p.

WoRMS Editorial Board (2025). World Register of Marine Species. Available from https://www.marinespecies.org at VLIZ. Accessed 2025-04-30. doi:10.14284/170

Annexe 1 : Fiche descriptive de l'habitat tombants (BioObs)

Fiche « Paroi rocheuse ou tombant en eau peu profonde »

Source: www.bioobs.fr, fiche-habitat/?id=55

Points à retenir

- Mer ouverte
- Profondeur de 0 à 30/40 mètres (infralittoral)
- Luminosité forte
- Courants : faibles à agités

Indicateurs caractérisant l'habitat

Fréquentation : +++ forteDiversité biologique : +++ forte

■ Vulnérabilité : +++ forte

Description physique de l'habitat

Habitats présents sur des substrats rocheux à parois verticales exposés à des courants modérés à forts.

Vie associée à l'habitat

Les parois verticales (ou tombants) à des profondeurs faibles (< 10 mètres) vont limiter le développement des laminaires.

En milieu exposé, les anémones-perles forment des tapis denses fixés à la paroi avec des algues calcaires encroûtantes, des alcyons, des éponges encroûtantes.

Dans les roches tendres, on pourra observer des hiatelles ridées, des cliones, des éponges mies de pain mouillé, des clavelines.

Annexe 2 : Fiches de releves pour les scaphandriers et le ROV

Pour les scaphandriers

Plongées sur les tombants - Eléments à recueillir

Nom du récif

Coordonnées du point de mise à l'eau

Tombant

Direction à suivre pour trouver le tombant Direction suivie le long du tombant

Profondeur du platier Profondeur du fond

Type de tombant

Mur

Strates

grosses fines

relevées dans quelle direction

Type de fond

Espèces dominates, marquantes

Conditions environnementales

Météo (houle, nuages, vent...)

Colonne d'eau (claire ou chargée)

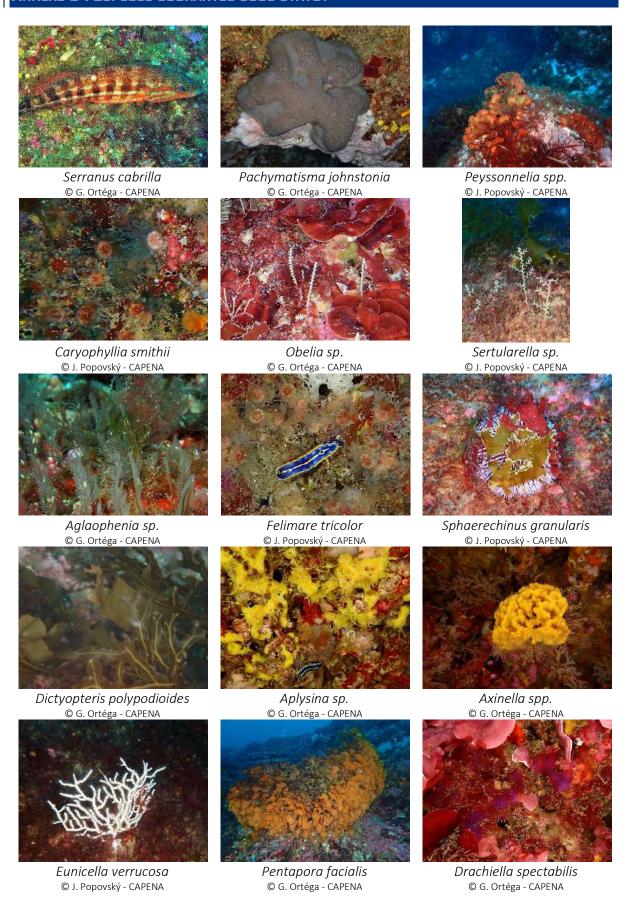
Profondeur de la thermocline

Température palier

Température zone de travail

Visibilité dans zone de travail

Pour le ROV


Code	0		I	F 1.00 .	Heure observation		Coordonnées	
P/T	Site Date Houle Ensoleillement		H_Debut	H_Fin	Point_Debut	Point_Fin		
					1			

Annexe 3 : Flore et faune de la cote basque avec statut, observes

Taxons	Statut
Peyssonnelia spp.	Algue caractéristique
Dictyopteris polypodioides	Algue caractéristique
Drachiella spectabilis	Algue caractéristique
Dictyota dichotoma	Algue caractéristique
Heterosiphonia plumosa	Algue caractéristique
Plocamium cartilagineum	Algue caractéristique
Zanardinia typus	Algue caractéristique
Halopithys incurva	Algue caractéristique
Halopteris scoparia	Algue caractéristique
Lithophyllum incrustans	Algue caractéristique
Metacallophyllis laciniata	Algue caractéristique
Desmarestia ligulata	Algue opportuniste
Gelidium spp.	Algue caractéristique
Halopteris filicina	Algue caractéristique
Halurus equisetifolius	Algue caractéristique
Mesophyllum lichenoides	Algue caractéristique
Rhodymenia pseudopalmata	Algue caractéristique
Ceramium spp.	Algue opportuniste
Colpomenia sp.	Algue opportuniste
Hypoglossum hypoglossoides	Algue opportuniste
Nitophyllum punctatum	Algue caractéristique
Pterosiphonia complanata	Algue caractéristique

Taxons	Statut
Serranus cabrilla	Liste ZNIEFF
Pachymatisma johnstonia	Liste ZNIEFF
Caryophyllia smithii	Liste ZNIEFF
Obelia sp.	Liste ZNIEFF
Sertularella sp.	Liste ZNIEFF
Aglaophenia spp.	Liste ZNIEFF
Felimare tricolor	Liste ZNIEFF
Sphaerechinus granularis	Liste ZNIEFF
Aplysina sp.	Liste ZNIEFF
Axinella spp.	Liste ZNIEFF
Eunicella verrucosa	Liste ZNIEFF
Pentapora facialis	Liste ZNIEFF
Echinus esculentus	Liste ZNIEFF
Ircinia sp.	Liste ZNIEFF
Leptopsammia pruvoti	Liste ZNIEFF
Berthella spp.	Liste ZNIEFF
Diplodus vulgaris	Liste ZNIEFF
Felimida luteorosea	Liste ZNIEFF
Axinella damicornis	Liste ZNIEFF
Bolma rugosa	Liste ZNIEFF
Peltodoris atromaculata	Liste ZNIEFF
Axinella verrucosa	Liste ZNIEFF
Paracentrotus lividus	Liste ZNIEFF
Halichondria sp.	Liste ZNIEFF
Parablennius pilicornis	Liste ZNIEFF
Galathea strigosa	Liste ZNIEFF
Halichondria panicea	Liste ZNIEFF
Pruvotfolia pselliotes	Liste ZNIEFF
Chartella papyracea	Liste ZNIEFF
Halecium sp.	Liste ZNIEFF
Acanthella acuta	Liste ZNIEFF
Polycyathus muellerae	Liste ZNIEFF
Trachurus mediterraneus	Liste ZNIEFF
Balanophyllia regia	Liste ZNIEFF
Diazona violacea	Liste ZNIEFF
Diplodus cervinus	Liste ZNIEFF
Gobius xanthocephalus	Liste ZNIEFF
Tethya sp.	Liste ZNIEFF

Annexe 3 : Especes courantes sous statut

Tombants subtidaux Descriptions de l'habitat sur la côte basque

Ircinia sp. © G. Ortéga - CAPENA

Leptopsammia pruvoti © G. Ortéga - CAPENA

Annexe 4 : Especes pouvant representer les compartiments du schema **EBQI** Coralligene

Taxon	Caractéristique / Régime alimentaire	Compartiment Schéma	
DI . I''.I I I''	D:	Coralligène	
Phymatolithon lenormandii	Bioconstructeur	C1/C2	
Peyssonnelia spp.	Bioconstructeur	C1/C2	
Pentapora facialis	Bioconstructeur / Filtreur	C1/C3	
Reteporella grimaldii	Bioconstructeur / Filtreur	C1/C3	
_eptogorgia sarmentosa	Bioconstructeur / Suspensivore	C1/C3	
Dictyopteris polypodioides	Macrophyte	C2	
Chrysymenia ventricosa	Macrophyte	C2	
Drachiella spectabilis	Macrophyte	C2	
Corynactis viridis	Suspensivore	C3	
Aglaophenia spp.	Suspensivore	C3	
Gymnangium montagui	Suspensivore	C3	
Obelia sp.	Suspensivore	C3	
Sertularella sp.	Suspensivore	C3	
Caryophyllia smithii	Suspensivore	C3	
Eunicella verrucosa	Suspensivore	C3	
Parazoanthus axinellae	Suspensivore	C3	
eptopsammia pruvoti	Suspensivore	C3	
Pachymatisma johnstonia	Filtreur	C3	
Clathrina sp.	Filtreur	C3	
Myxilla sp.	Filtreur	C3	
Aplysina sp.	Filtreur	C3	
Axinella spp.	Filtreur	C3	
	Filtreur	C3	
Thymosia guernei			
rcinia sp.	Filtreur	C3	
Protula spp.	Filtreur		
Filograna spp.	Filtreur	C3	
Salmacina sp.	Filtreur	C3	
Cliona sp.	Filtreur / bioérosion	C3/C4	
Sphaerechinus granularis	Brouteur (algues calcaires)	C4/C5	
Ophioderma longicaudum	Prédateur	C4/C5	
Echinus esculentus	Brouteur omnivore	C4/C5	
Felimare tricolor	Brouteur (spongiaires)	C4/C5	
Felimare cantabrica	Brouteur (spongiaires)	C4/C5	
Parablennius rouxi	Algues, crustacés copépodes, vers	C5/C7	
Boops boops	Planctonophage	C6	
Coris julis	Carnivore (invertébrés)	C7	
Diplodus cervinus	Carnivore (invertébrés)	C7	
Diplodus vulgaris	Carnivore (invertébrés)	C7	
abrus bergylta	Carnivore (invertébrés)	C7	
abrus mixtus	Carnivore (invertébrés)	C7	
Oblada melanura	Algues, zooplancton, invertébrés	C7	
Parablennius ruber	Algues, éponges, crustacés	C7	
Spondyliosoma cantharus	Carnivore (invertébrés)	C7	
Symphodus melops	Carnivore (invertebres)	C7	
Tripterygion delaisi	Carnivore (invertebres)	C7	
Parablennius gattorugine	Algues, invertébrés benthiques	C7/C5	
	·		
Ctenolabrus rupestris	Carnivore (invertébrés et petits poissons)	C7/C8	
asyatis pastinaca	Carnivore (invertébrés et petits poissons)	C7/C8	
Gobius xanthocephalus	Carnivore (invertébrés et petits poissons)	C7/C8	
Muraena helena	Carnivore	C7/C8	
Scorpaena notata	Carnivore (invertébrés et petits poissons)	C7/C8	
Serranus cabrilla	Carnivore (petits poissons, céphalopodes, crustacés)	C7/C8	
Thorogobius macrolepis	Carnivore (invertébrés et petits poissons)	C7/C8	
Trisopterus luscus	Carnivore (invertébrés et petits poissons)	C7/C8	
Trachurus mediterraneus	Piscivore	C8	
Holothuria spp.	Détritivore	C10	
Echinaster sepositus	Détritivore	C10	

Rédaction: Josiane Popovský – CAPENA

Relecture: Laurent Soulier - CAPENA, Aurélie Lutrand - OFB, Sandrine Derrien-Courtel - MNHN

Photographie de couverture : CAPENA

Mise en page et infographie : CAPENA / OFB / Marha

Ce document a été réalisé avec le soutien financier du programme Life de l'Union européenne, dans le cadre du projet Life intégré Marha (LIFE16 IPE/FR001). Le contenu de ce document n'engage que ses auteurs et la Commission européenne ne peut être tenue responsable de l'utilisation qui pourrait être faite des informations qu'il contient.

Marha poursuit l'objectif de rétablir et de maintenir le bon état de conservation des 9 habitats marins d'intérêt communautaires présents en France métropolitaine. Il mobilise l'ensemble des acteurs impliqués dans la gestion des sites Natura 2000 marins ou littoraux désignés au titre de la Directive Habitat Faune Flore (mer et lagunes méditerranéennes).

Contact: life.marha@ofb.gouv.fr

Site internet : www.life-marha.fr | Suivez-nous sur Linkedin : www.linkedin.com/groups/13618978

